

Taller Internacional

Desarrollo de escenarios climáticos a corto plazo (2020-2050) para cuencas vulnerables a la variabilidad climática interanual, decadal y el cambio climático

La Serena, 3-8 Agosto2014

Informe Final

Acceso a la página web de MWAR-LAC con las presentaciones

Introducción

Del 4 al 7 de agosto se realizó el primer taller para el desarrollo de escenarios climáticos a corto plazo (2020-2050) para cuencas vulnerables en América Latina. El objetivo de esta actividad fue el desarrollo de escenarios probabilísticos para condiciones climáticas a corto plazo para cuencas vulnerables en América Latina, basado en un análisis histórico de la variabilidad climática, en combinación con una evaluación de la relación actual y proyectada con el cambio climático. En combinación con modelos de apoyo a la toma de decisiones, como el modelo WEAP, estos escenarios climáticos a corto plazo informan sobre la vulnerabilidad futura de la oferta hídrica en estos entornos de estrés hídrico.

Como objetivos específicos del taller se identificaron a) la capacitación de profesionales en la aplicación del análisis de escenarios climáticos a corto plazo para aplicaciones en hidrología y análisis de vulnerabilidad a la sequía; b) entrenamiento sobre las opciones de programas de código abierto disponibles (R y Python); c) incrementar el número de especialistas en la región instruidos en la metodología; d) generar un set de casos de estudios preliminares en la región y; e) determinar la vulnerabilidad de los recursos hídricos a la variabilidad interanual, decadal y el cambio climático en cuencas pilotos de la región.

En esta primera actividad, se capacitaron participantes de Chile, Bolivia, Colombia¹ y Perú, que fueron especialmente elegidos por su fuerte lazo con los usuarios finales, las agencias

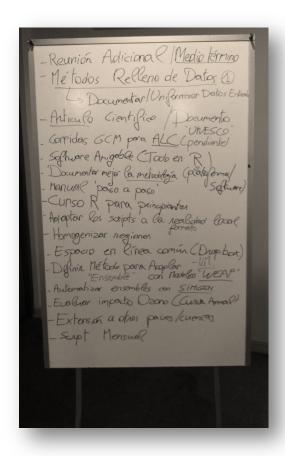
gubernamentales encargadas de la gestión hidrológica y los centros de investigación y universidades de respectivos países, además de vinculados estar con los Comités **Nacionales** del Programa Hidrológico Internacional (PHI) de UNESCO.

Resultados del taller

Durante el taller, se demostraron diferentes herramientas y algoritmos necesarios para identificar la variabilidad climática en diferentes escalas de tiempo. Se logró capacitar a los participantes de Chile, Perú, Colombia y Bolivia en el uso de la metodología para un caso de estudio en la Región de América Latina (Argentina/Uruguay), que replicaron en sus propios computadores. Utilizando datos de los diferentes países, se realizó una primera versión de estos escenarios para una cuenca piloto de sus países, y se identificaron

_

¹ Via particpación remota



dificultades para poder aplicar la metodología completa. Finalmente, se elaboró un plan de trabajo con acuerdos y con los pasos siguientes para lograr el acoplamiento de los escenarios climáticos generados con los modelos de gestión hidrológica.

Identificación de desafíos futuros

Después de la capacitación y aplicación de la metodología a los casos de estudios de los diferentes países, se generó un set de recomendaciones y desafíos futuros con respecto a la metodología, basado en las experiencias de cada uno de los participantes en el taller:

- 1) La metodología requiere series de tiempo de las diferentes variables (tmin, tmax y precip) sin datos faltantes. Para muchos lugares significa la necesidad de rellenar las series existentes. Por lo tanto, se requiere definir un método estándar de relleno de datos que se aplicará a las estaciones que lo requieran. Para asegurar que se aplican de forma uniforme, se propone la creación de un script adicional que se encargue de realizar el relleno junto con un breve manual asociado para su utilización.
- 2) En el mismo contexto se requiere uniformizar los datos de entrada al análisis, por ejemplo asegurando la homogeneidad de los datos y la identificación de las estaciones discordantes. Por lo tanto se propone agregar el script de determinación de zonas homogéneas que ha sido creado en el proyecto 'Atlas de Sequías' al script existente de preprocesamiento de datos.
- La identificación de los diferentes componentes de variabilidad (decadal, interanual y tendencia) es importante para evaluar bien la
- estrategia de proyección posterior. Por lo tanto se propone <u>incluir los gráficos que</u> <u>muestran los diferentes componentes por separado</u> en el script de pre-procesamiento.
- 4) Un análisis adicional que se requiere realizar antes de correr Simgen, es la relación entre la señal regional pluviométrica y i) la temperatura global, ii) la evolución del ozono histórico y su proyección a futura, y iii) las proyecciones de precipitación de los GCMs en el siglo XX y XI. Se propone agregar un simple análisis en el script de pre-procesamiento para indicar las correlaciones importantes para definir qué tipo de relación será la más apropiada para

representar condiciones futuras, <u>basado en su 'sensibilidad' actual</u> para representar las condiciones observadas.

- 5) Se observa que actualmente no se dispone de la información requerida por el script simgen para la aplicación de las tendencias de los GCMs con respecto a la precipitación. Esto requiere un análisis avanzado con las salidas de los modelos CMIP5, a lo cual el IRI tiene un acceso fácil y los medios técnicos y profesionales para lograrlo. Por lo tanto se propone pedir apoyo al IRI para generar para cada ubicación en América Latina (o a nivel global) el análisis requerido, que consiste en el cálculo de la media y el desvío estándar de las proyecciones de los distintos modelos GCM incluidos en CMIP5.
- 6) Aunque actualmente existe una presentación con los pasos a seguir, se requiere un manual más formal en español que integre mejor los diferentes componentes de la metodología, y que también explique el marco teórico de la metodología y sus conceptos básicos (que actualmente solo existe en inglés). Se propone generar un manual que documente mejor todos los componentes de la metodología que incluya una guía paso-apaso con un caso de estudio concreta como ejemplo. También se propone incluir un manual para principiantes en R ya que gran parte del procesamiento de los datos se realiza bajo este entorno.
- 7) Tomando en cuenta la dificultad de contar con series de datos diarios con suficiente longitud de registros, se propone evaluar la versión actual del script con resolución mensual, o adaptar el script para <u>poder leer archivos con periodo mensual en lugar de</u> diario.
- 8) Se observa que los scripts requieren cierto formato de los datos de entrada (formato 'ACRU') que es ajeno al formato utilizado en la región (formato 'WEAP' u otro). Se propone evaluar la factibilidad de modificar <u>las entradas y salidas de Simgen</u> para generar series que son <u>más compatibles</u> con los estándares más comunes en la región.
- 9) La necesidad de ejecutar el procesamiento bajo un entorno Linux complica la aplicación general de la metodología. A más largo plazo, se propone evaluar la factibilidad de migrar todo el código a <u>un entorno de modelación único</u> (p.e., R) que sea <u>compatible con Windows</u>.
- 10) La generación de 'ensambles' con simgen es todavía un proceso manual. Se propone evaluar la factibilidad de generar 'ensambles' masivos de forma automatizada, utilizando así distribuciones de escenarios parecidos en los diferentes casos de estudio en la región.
- 11) Dado que el segundo objetivo es la generación de escenarios para la gestión de los recursos hídricos en cuencas vulnerables, se requiere <u>definir una metodología para acoplar los escenarios climáticos con modelos hidrológicos y de gestión</u>, como por ejemplo WEAP. Se propone generar experiencia en la región de este proceso para generar un manual correspondiente.
- 12) Basado en los avances de los participantes en los diferentes casos de estudio, y el avance con el acoplamiento con modelos de gestión hidrológica, se propone <u>realizar una reunión</u>

adicional de 'medio término', donde se presentan los resultados y lecciones aprendidas (la presentación de informes por caso de estudio) y una capacitación sobre el acoplamiento con modelos de gestión hidrológica para iniciar la siguiente etapa.

- 13) Se espera documentar la aplicación de la metodología en los diferentes casos de estudio, identificando tres niveles. En primera instancia, se propone generar informes uniformes de cada uno de los casos de estudio, basado en un formato predefinido. En segundo lugar, se propone uniformizar las contribuciones en un documento de difusión (por ejemplo 'Documentos Técnicos de UNESCO-PHI' u otro). Finalmente, se proyecta la posibilidad de publicar los resultados del proceso completo en una revista científica a mediano plazo.
- 14) Por tal motivo, se requiere generar un espacio común, donde se puede colocar las bases de datos generadas en cada caso de estudio y sus resultados. Por lo tanto, se propone generar un dropbox para compartir los manuales/códigos/datos/resultados.
- 15) Basado en los primeros resultados de los casos de estudio elegidos, se puede evaluar <u>replicar la experiencia</u> en otros casos de estudio o en otros países.

Acuerdos y compromisos

Basado en la discusión anterior, se definió un set de acuerdos y compromisos para finalizar los objetivos del taller y la generación de escenarios climáticos a corto plazo acoplados con modelos de gestión hidrológica.

Actividades	CAZALAC/ UNESCO	Chile	Perú	Bolivia	Colombia
Cuenca piloto identificada	31/aug	Huasco/ Limari	31/aug	31/aug	31/aug
Método de diagnóstico desarrollado	15/sep	=	-	-	-
- Análisis homogeneidad de datos		=	-	-	-
- Correlación CRU-Datos Observados		=	-	-	-
- Correlación TMMM-Datos Observados		-	-	-	-
- Correlación 03-Datos Observados		=	-	-	-
- Correlación GCM-Datos Observados		-	-	-	-
- Generación de Análisis de Wavelet		=	-	-	-
Método relleno de datos disponible	30/sep	-	-	-	-
Datos mensuales disponible	-	15/sep	15/sep	15/sep	15/sep
Versión Mensual disponible	30/sep	-	-	-	-
Versión Mensual aplicado	-	15/oct	15/oct	15/oct	15/oct
Datos diarios disponible	-	31/oct	31/oct	31/oct	31/oct
Manual de la Metodología disponible	31/oct	=	-	-	-
Versión Diario Aplicado	-	15/nov	15/nov	15/nov	15/nov
- Informe con resultados disponible	-	30/nov	30/nov	30/nov	30/nov
 Documento con casos de estudio publicado 	28/feb	28/feb	28/feb	28/feb	28/feb
-Artículo científico de casos estudio publicado		(p	or definir)		
Aplicación en modelos hidrológicas	20/dec	-	-	-	
- Informe con resultados disponible		(р	or definir)		
- Documento con casos de estudio publicado		(p	or definir)		
-Artículo científico de casos estudio publicado		(p	or definir)		

Carta Gantt

	İ			200	4 4			_	041	_
		/	/	20 ⁻	,	/	/	/	2015	. /
		groon g	s_{φ}	\		}/&]/.å] 2	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	֓֞֓֞֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
Actividad										
Fase 1: Transfer Tecnologico										
Taller en Chile para cuencas pilotos	Α	8								
Cuenca piloto identificado	В	31								
Metodo de diagnóstico desarrollado	С		15							
Metodo relleno de datos desarrollado	D		30							
Versión Simgen 'Mensual' disponible	Ε		30							
Manual de la Metodología disponible	F			31						
Fase 2: Desarrollo de series de CC para cuencas pilotos										
Datos mensuales disponibles			15							
Versión Simgen 'Mensual' aplicado en Chile, Bolivia, Colombia y Pe	Α			15						
Datos diarios disponible	В			31						
Versión Simgen 'Diario' Aplicado en Chile, Bolivia, Colombia y Peru	С				15					
Informe con resultados disponible para Chile, Bolivia y Peru	D				30					
Documento con casos de estudio publicado	Ε							28		
Articulo científico de casos estudio publicado (por definir)	F									
Fase 3: Aplicación de modelos con escenarios CC										
Documentación de la metodología utilizando WEAP	Α					20				
Taller de capacitación 'medio término' (por confirmar)	В									
Aplicación en Chile	С									
Acoplamiento con el Observatorio Agrocilimatico	D									
Aplicación en Peru	Ε									
Acoplamiento con el Observatorio de Sequías	F									
Aplicación en Bolivia	G									
Aplicación en Colombia	Н									
Fase 4: Involucramiento de usuarios finales										
Involucramiento de usuarios en Chile (por definir)	Α									
Involucramiento de usuarios en Peru (por definir)	В									
Involucramiento de usuarios en Colombia (por definir)										
Involucramiento de usuarios en Bolivia (por definir)										
Fase 5: Coordinación y difusión										
Apoyo técnico a los socios y de coordinación	Α									
Evento de difusión a tomadores de decisiones (por definir)	В									
Informe final de aplicaciones de los casos pilotos										
,						-	—			

^{*}El número indicado en <mark>rojo</mark> define la fecha límite

Anexo 1: Listado de participantes

Persona	Institución	Pais	Correo electrónico
Katherine Rojas	UMSA	Bolivia	katherinerojasmurillo@gmail.com
Walter Martín Leyva Molina	UNMSM	Peru	martin.leyva.molina@gmail.com
Luis Metzger Terrazas	SENAMHI	Peru	lmetzger@senamhi.gob.pe
Claudia Romero Hernandez	USanto Tomas	Colombia	rhclaudiapatri@hotmail.com
Gabriel Rodriguez	INTA	Argentina	garodri@gmail.com
Katherine Moreno Alfaro	JVRH	Chile	katherine.riohuasco@gmail.com
Sergio Gutierrez Valdés	JVRH	Chile	sergio.riohuasco@gmail.com
Pablo Rojas Torres	JVRH	Chile	pablo.riohuasco@gmail.com
Veronica Diaz	JVRH	Chile	veronicadiaz.riohuasco@gmail.com
Koen Verbist	UNESCO	Chile	k.verbist@unesco.org
Raul Cisternas Novoa	DGA	Chile	raul.cisternas@mop.gov.cl
Juana Mejía Gamarra	UMSA	Bolivia	j.mejiag2@gmail.com
Hector Maureira	CAZALAC	Chile	hmaureira@cazalac.org
David Poblete	UC	Chile	dnpoblet@uc.cl

Anexo 2: Programa del Taller

Lunes 4 de Agosto: Introducción a la metodología

Luncs + uc Ag	osto: introducción a la inctodología	
Horario	Actividad	Instructor
08:45-09:15	Inscripción de los participantes	Organizadores
09:15-09:45	Sesión de apertura, UNESCO-CAZALAC	
09:45-10:30	Presentación MWAR-LAC	Koen Verbist
10:30-10:45	Café	
10:45-11:30	Presentación de los participantes	
11:30-11:45	Distribución de los materiales del taller	
11:45-13:00	Introducciónal marco general para la simulación de la variabilidad decadal para	Koen Verbist/ Gabriel Rodriguez
	aplicaciones agrícolas y otras aplicaciones ¹	
13.00:-14:30	Almuerzo	
14:3016:00	<u>Presentación del Software SimGen</u> ²	Koen Verbist/Gabriel Rodriguez
16:00-16:30	Café	
16:30-18:00	Instalación de MáquinasVirtuales con	Gabriel Rodriguez

Python y R	

Martes 5 de Agosto:Entrenamiento en el uso de la metodología utilizando un estudio de caso

Tiempo	Actividad	Instructor
09:00-10:30	Un caso de estudio utilizando SimGen:	Gabriel Rodriguez
	<u>Demostración de uso en Argentina</u> ³	
10:30-10:45	Café	
10:45-13:00	Ejercicio práctico guiado: Aplicación de	Gabriel Rodriguez
	SimGen a datos de estaciones en Argentina	
13:00-14:30	Almuerzo	
14:3016:00	Ejercicio práctico guiado: Aplicación de	Gabriel Rodriguez
	SimGen a datos de estaciones en Argentina	
16:00-16:30	Café	
16:30-18:00	Ejercicio práctico guiado: Aplicación de	Gabriel Rodriguez
	SimGen a datos de estaciones en Argentina	

Miércoles 6 de Agosto: Trabajo individual de los participantes con sus bases de datos nacionales con supervisión de los instructores

Tiempo	Actividad	Instructor
09:00-10:30	Aplicación de Simgen para casos de estudios	Gabriel Rodriguez/
	en ALC. Paso 1: Ingresar los datos y	Koen Verbist
	descomposición de series de tiempo	
10:30-10:45	Café	
10:45-13:00	Paso 2: Descomposición de la variabilidad	Gabriel Rodriguez/
	anual y decadal a nivel regional	Koen Verbist
13:00-14:30	Almuerzo	
14:3016:00	Paso 3: Descomposición de la variación sub-	Gabriel Rodriguez/
	anual	Koen Verbist
16:00-16:30	Café	
16:30-18:00	Paso 3: Descomposición de la variación sub-	Gabriel Rodriguez/
	anual	Koen Verbist

Jueves7 de Agosto: Trabajo individual de los participantes con sus bases de datos nacionales con supervisión de los instructores

Tiempo	Actividad	Instructor
09:00-10:30	Paso 4: Identificación de la tendencia	Gabriel Rodriguez/
	regional al cambio climático	Koen Verbist

10:30-10:45	Café	
10:45-13:00	Paso5 : Simulación y evaluación de modelos	Gabriel Rodriguez/
		Koen Verbist
13:00-14:30	Almuerzo	
14:3016:00	Comparación de resultados	
16:00-16:30	Café	
16:30-17:30	Conclusiones y Hoja de ruta para	
	actividades futuras	
17:30-18:00	Cierre	UNESCO-CAZALAC

Viernes 8 de Agosto: Retorno de los participantes

Anexo 3: Material de Referencia

- (1) Greene, A.M., M. Hellmuth, and J.W. Hansen. 2012a. <u>A framework for the simulation of regional decadal variability for agricultural and other applications.</u> CCAFS Report.International Research Institute for Climate and Society.
- (2) Greene, A.M. 2012. <u>The simgen software package: User guide and notes.</u> International Research Institute for Climate and Society.
- (3) Greene, A.M., M. Hellmuth, and T. Lumsden. 2012b. <u>Stochastic decadal climate simulations for the Berg and Breede Water Management Areas, Western Cape province, South Africa.</u> Water Resour Res 48:W06504.